
HCC API Documentation

V1.1.0.2 (2018-10-31)
Copyright © 2012-2018 Heinz Traub

www.tripleheinz.com/index.php?page=mtht

HCC API Reference

The HCC API is a series of declarations, conventions and specifications created to promote a common interface to

work with MetaTrader history files. The HCC Library is the “first 3rd party” implementation of the HCC API, being the

official one considered the private work from MetaQuotes (who created the file format) even if both foundations do

not entirely comply between each other. The HCC Library has been conceived as a C DLL using the D programming

language v2; therefore functions will be explained using the D syntax which is common to the C family languages.

Programmers are free to create their own implementations of the HCC API matching the described conventions or

use the HCC Library in their own programs using this document as a base guide and reference.

Index

HCC Types

HCC Constants

HCC Structures

HCC Enumerations

Return Code Table

HCC Functions

HCC Types

The following table describes the types used by the HCC library, their size in memory and what they are used for:

Type Size Usage

ReturnCode Unsigned 32 bits integer Success or failure of HCC functions. Returned by most HCC functions.
HCCHandle Unsigned 32 bits integer Represents an opened HCC file. Used by other HCC functions.

ubyte Unsigned 8 bits integer Used for certain byte stream lengths.
ushort Unsigned 16 bits integer Used to represent a language ID.

uint Unsigned 32 bits integer Type for certain rates members, indexes, ranges, amounts and counts.

double 64 bits floating point Used for prices.
bool Unsigned 8 bits integer Boolean value. Holds “true” or “false”. Used in certain parsing options.

wchar*
Size of a wide char
pointer

Null terminated string in UTF-16LE encoding.
Used for any string such as file paths, error messages and symbols.

ubyte*
ubyte[]
ubyte[n]

Size of byte pointer or
‘n’ bytes for static array

Byte stream. It is used internally in all three forms: As a pointer, as a
dynamic array and as a static array. Used for parsing separator.

HCC Constants

Type ID Value Description
ReturnCode HCC_SUCCESS 0 Success of HCC functions. Returned by most HCC functions.

HCC Structures

In the HCC Library, the fields of a structure have no alignment. Members are packed together to match the

behaviour in MQL5.

HCCRates

Primary structure used to define rates in OHLC format plus some extra fields.

Members
Type ID Description

uint time

Start date and time of the period. The type is HCC specific and is defined as an unsigned
32 bits arithmetic type that represents the number of seconds elapsed since 1970.01.01
00:00, expressed as UTC time (GMT timezone = 0).
MetaTrader uses the same format but stores the timestamp in a 64 bits integral type
(datetime) for a broader range or greater accuracy. The HCC type uses 32 bits in memory
but can be perfectly promoted to a datetime type.

double open Open price.
double high Highest price.

double low Lowest price.

double close Close price.
uint volume Tick volume.

uint spread Spread.

HCCParsingOptions
Structure used to pass parsing options to HCCSetParsingOptions function.

Members
Type ID Description

HCC_RATES_SEPARATOR separator
Specifies the separator type. It can be one of the officially defined
ones or a custom one. Defaults to “Standard“.

ubyte[8] custom_separator

When the separator type is custom then this field is used to specify
the byte stream (the separator itself). It is defined as a static array
for convenience. It can also be defined by other languages as a
dynamic array. Internally it is accessed as a pointer so it can also be
defined as such.

ubyte custom_length
When the separator type is custom then this field specifies the
length of the byte stream in custom_separator. Valid lengths are in
the range >=1 and <=8.

bool fast_parse

Experimental. Enables optimizations for faster reading speeds in the
parsing algorithm. It defaults to “false“ (disabled) because the
inconsistent packing in HCC files breaks aligned reads and the
algorithm has to fallback to standard routines quite often, resulting
some times in equal or worse performance. Try and see which
configuration performs better with your files.

bool halt_corrupt

This option instruct the parsing algorithm (affecting read and write
functions) to halt its execution when a corrupt rates structure is
detected. It is disabled by default for flexibility but you can enable it
if you want to detect suspicious rates in your files or you want a
more conservative approach and maintain the file integrity. Keep it
disabled to work naturally and freely with files (recommended).

bool ignore_corrupt

This option is only used when halt_corrupt is false. If a corrupt rates
structure is detected then you can instruct the parsing algorithm to
ignore it and continue processing the next block of data. Enabling
this option can affect the rates generated for periods greater than 1
minute and can result in missing rates while working in M1 period.
Disabling it will allow you to work with all rates available and will
allow you to fix corrupted rates. Keep it disabled to work naturally
and freely with files (recommended).

HCC Enumerations

The underlying type for enums is int (signed 32 bits integer). A cast to uint (unsigned 32 bits integer) may be

required by some languages when using these enums with HCC functions.

HCC_RATES_PROPERTY
Used to get members from rates structure using HCCGetRatesDouble and HCCGetRatesInteger functions.

Values
ID Value Description

Time 0

Open 1
High 2

Low 3
Close 4

Volume 5
Spread 6

HCC_TIMEFRAME
Timeframes expressed as minutes. Used by time computing functions.

Values
ID Value Description

M1 1 1 Minute.

M2 2 2 Minutes.
M3 3 3 Minutes.

M4 4 4 Minutes.
M5 5 5 Minutes.

M6 6 6 Minutes.
M10 10 10 Minutes.

M12 12 12 Minutes.

M15 15 15 Minutes.
M20 20 20 Minutes.

M30 30 30 Minutes.
H1 60 1 Hour.

H2 120 2 Hours.
H3 180 3 Hours.

H4 240 4 Hours.

H6 360 6 Hours.
H8 480 8 Hours.

H12 720 12 Hours.
D1 1440 1 Day.

W1 10080 1 Week.
MN28 40320 1 Month containing 28 days.

MN29 41760 1 Month containing 29 days.
MN30 43200 1 Month containing 30 days.

MN31 44640 1 Month containing 31 days.

MN MN30 Standard Month.
TM MN * 3 1 Trimester.

SM MN * 6 1 Semester.
Y1 525600 1 Year.

LY1 527040 1 Leap year.
Remarks: You can safely use periods greater than a year in HCC functions but they do not make sense because HCC

files store rates in one file per year.

HCC_RATES_SEPARATOR
Used to specify the type of separator for the rates parsing algorithm. Used by HCCSetParsingOptions function.

Values
ID Value Description

None 0
No separator. This means that rates are stored adjacently using a fixed size structure
with a known file length.

Standard 1 Standard separator. (default)

Custom 0x7FFFFFFF User-defined separator.
Remarks: If you have a known separator that you would like to include in the official enumeration then you can send

me the information and I will add it to the documentation if it qualifies. I will ask you for information such as: Broker

name, platform, country, year (of the rates data), symbol, the separator stream itself (if known)…anyway any

information that can be used to identify and register the separator with a unique entry, oh and the HCC file in

question for testing and validation. Usually, an HCC file that can’t be parsed correctly is a sign that it may use a non-

standard separator.

Return Code Table

HCC functions return a code (ReturnCode type) to notify either success or failure. These codes can be brought to

human readable strings to know their meaning using the HCCGetErrorMessage function. In current version the

default and only language is English but more languages might be added in future releases.

Code Description

0 Success.
1 Unknown error.

2
Could not retrieve error description. Please note that this description is naturally not retrievable
using the HCCGetErrorMessage function.

10000 The specified file doesn't exist.

10001 Couldn't open the specified file.

10002 The specified file is not readable.
10003 The specified file is not writeable.

10004 The specified file is not seekable.
10005 The specified file doesn't have a valid header.

10006 Read error.
10007 Write error.

10008 Seek error.

10009 The end of file has been reached.
10010 Invalid history file.

10011 Invalid file handle.
10012 Invalid index.

10013 Invalid property.
10014 Invalid separator.

10015 Invalid decimal mark.

10016 Invalid CSV parameters. Separator might have character(s) in common with decimal mark.
10017 History has not been previously loaded.

10018 History cache is empty.
10019 Invalid period.

10020 Corrupt rates detected. Either the time, low and high values are invalid.
10021 Invalid parsing option.

10022 Invalid transaction call. Could not begin or commit a transaction.

10023 Invalid transaction operation.

HCC Functions

The HCC API works by storing the requested rates in an internal buffer. Once the rates are loaded into this buffer

then all the other functions can be called to operate on rates. Rates can be reloaded into the buffer with different

parameters, discarding the contents of the previously filled buffer.

A typical program workflow would be like:

1. Open an HCC file to obtain an HCC handle with a call to HCCOpenFile.

2. At this point you may optionally call HCC handle specific functions such as HCCGetSymbol and

HCCGetPrecision.

3. Load history into the internal buffer with a call to HCCLoadHistory.

4. Now that history is loaded into memory you may optionally call history specific functions to retrieve general

information about the stored data such as HCCGetHistoryLength and HCCGetHistoryPeriod.

5. Now, here is what you want: Working with rates. To do that you can directly get each rates structure with a

call to HCCGetRates. Alternatively you can get individual properties with a call to HCCGetRatesDouble and

HCCGetRatesInteger.

6. If you are in need of exporting your memory loaded history to a CSV file then you can do that with a call to

HCCExportHistoryCSV.

7. Close the HCC handle with a call to HCCCloseFile.

void HCCInitialize(void* gc)
Perform library initialization routines.

Parameters
Type ID Direction Description

void* gc IN

Handle of void pointer type to the garbage collector. This parameter can
be safely set to NULL if you don’t know what to do with it. Setting this
parameter to NULL will instruct the HCC library to use its own integrated
garbage collector.

Remarks
This function is available only for the D programming language and is totally optional.

If you wish to set the garbage collector then make sure to always call this function before calling any other function
of the HCC API.

The handle to the garbage collector is absolutely optional but the idea of specifying it is for system resources
optimization purposes: It is better to have only one garbage collector running in the background than two of them
performing the same operations.

void HCCTerminate()

Perform library termination routines (module destructors, garbage collection, etc).
Remarks

This function is available only for the D programming language and is totally optional.
If you previously called the function HCCInitialize then make sure to always call this function before your program
ends.

ReturnCode HCCGetErrorMessage(ReturnCode code, ushort language, wchar* message)
Gets verbose description for the specified code.

Parameters
Type ID Direction Description

ReturnCode code IN Code of the message you want to get.
ushort language IN Language ID of the message. Pass 0 for the default language.

wchar* message OUT
Message associated for the code. Memory for the string must be
previously allocated and the space must be long enough to hold the
returned string including the terminating null character.

Remarks
There is no retrievable message for error code #2; in that case it will return the same code.

This is one of the very few functions that cannot take advantage of the automatic memory management and require
preallocated memory due to the work with vector data. It has been implemented this way to maintain compatibility
with languages that do not have direct access to pointers.

ReturnCode HCCOpenFile(const(wchar)* path, out HCCHandle file)
Open history file for further operation.

Parameters
Type ID Direction Description

const(wchar)* path IN Path to the history file. It can be an absolute path (C:\data\myfile.hcc) or
a path relative to the current working directory (..\data\myfile.hcc).

HCCHandle file OUT
Handle to the opened file. You should keep a reference to this handle
because it is used by most HCC functions.

ReturnCode HCCCloseFile(HCCHandle file)
Close history file pointed by the specified handle.

Parameters
Type ID Direction Description

HCCHandle file IN
File handle to close. Using this handle with any HCC function after it is
closed will return error code #10011.
The handle must be a valid one created by the HCCOpenFile function.

Remarks
This function does not reset the value of the handle to any other value.
The handle becomes invalid after calling this function, even if the value held is non zero.

ReturnCode HCCGetSymbol(HCCHandle file, wchar* symbol)
Get the symbol associated with the specified history file.

Parameters
Type ID Direction Description

HCCHandle file IN File handle whose symbol you want to get.

wchar* symbol OUT
The symbol of the history file. Memory for the string must be previously
allocated and the space must be long enough to hold the returned string
including the terminating null character.

Remarks

This is one of the very few functions that cannot take advantage of the automatic memory management and require
preallocated memory due to the work with vector data. It has been implemented this way to maintain compatibility
with languages that do not have direct access to pointers.

ReturnCode HCCGetPrecision(HCCHandle file, out uint precision)
Get symbol decimal precision (number of digits after the decimal mark).

Parameters
Type ID Direction Description

HCCHandle file IN File handle.
uint precision OUT Precision value.

Remarks
The precision value is most often used for text formatting purposes.

ReturnCode HCCSetParsingOptions(HCCHandle file, HCCParsingOptions options)
Sets all the options for the rates parsing algorithm. This affects how rates are detected by the HCC functions.

Parameters
Type ID Direction Description

HCCHandle file IN File handle.
HCCParsingOptions options IN Parsing options.

Remarks
The options defined are persistent between function calls until the next call to HCCSetParsingOptions which
overrides the options to the ones of the latest call.
Read and write functions are affected by the options set by this function.

The default options are set for a flexible and natural work with history files. You can alternatively enable a strict
mode to maintain file integrity by setting the option halt_corrupt to true.

ReturnCode HCCLoadHistory(HCCHandle file, uint period, uint start, uint how_many, out uint load_count)
Load rates from the specified file handle to an internal buffer in system memory using specific parameters.

Parameters
Type ID Direction Description

HCCHandle file IN Source history file.

uint period IN
Timeframe of history. Can be any value >0 or one of the HCC predefined
ones (HCC_TIMEFRAME). This parameter is still experimental, you should
pass 1.

uint start IN Zero based index of the first element.
uint how_many IN Specify how many rates to load. Zero means all available.

uint load_count OUT Return the number of rates loaded.
Remarks

This function can be called as many times as you want. With each call the internal buffer is cleared and the new
rates are stored.
To be memory efficient, instead of loading the whole history (start = 0 and how_many = 0) you can load history in
small chunks by making sequential calls and increasing the start value to the number of rates loaded in the last call.
Variable load_count is very helpful for this purpose. The HCC Library is very quick and efficient for this kind of
sequential load.
In case of reaching the end of file, the function will return HCC_SUCCESS and load_count will return 0.

Rates are created and loaded based on the specified period. A file may contain thousand of rates but this doesn’t
mean there are as much as needed to create rates in the specified timeframe. This could result in history having
fewer rates than the source file or having no rates at all.

ReturnCode HCCUnloadHistory(HCCHandle file)
Explicitly unload rates and clear the internal buffer in system memory.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
Remarks

This function is used to free system resources. Very handy in case you loaded history and copied it to arbitrary
space to do extended work and the original history is needed no more.

History must have been loaded first using HCCLoadHistory or else error code #10017 will be returned.

ReturnCode HCCGetHistoryLength(HCCHandle file, out uint length)
Get the number of rates in the internal history buffer.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
uint length OUT Number of rates in previously loaded history.

Remarks
This function is useful in case you did not hold a reference to the value of load_count returned by the
HCCLoadHistory function, as it returns the same value.

History must have been loaded first using HCCLoadHistory or else error code #10017 will be returned.

History length may be 0 if the history file has no rates available. If that is the case then the function will return
HCC_SUCCESS and load_count will return 0.

ReturnCode HCCGetHistoryPeriod(HCCHandle file, out uint period)
Get the timeframe of the currently loaded history.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
uint period OUT Current timeframe.

Remarks
History must have been loaded first using HCCLoadHistory or else error code #10017 will be returned.

If history was previously loaded but there were no rates available then this function will return HCC_SUCCESS and
period will return the timeframe used when history was loaded.

ReturnCode HCCGetRates(HCCHandle file, uint index, out HCCRates rates)
Get the selected rates structure from history buffer to do further work with its values.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.

uint index IN
Zero based index of the rates structure to load. This index points to an
element in history buffer and not to an element in history file.

HCCRates rates OUT The selected rates structure.
Remarks

There must be rates in history previously loaded by HCCLoadHistory and the index must be valid one.

ReturnCode HCCGetRatesDouble(HCCHandle file, uint index, HCC_RATES_PROPERTY prop, out double value)
Alternative function to get a member of double type from a rates structure.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
uint index IN Zero based index of the rates structure in history buffer.

HCC_RATES_PROPERTY prop IN Member/property to load.

double value OUT Return the desired value.

ReturnCode HCCGetRatesInteger(HCCHandle file, uint index, HCC_RATES_PROPERTY prop, out uint value)
Alternative function to get a member of uint type from a rates structure.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
uint index IN Zero based index of the rates structure in history buffer.

HCC_RATES_PROPERTY prop IN Member/property to load.

uint value OUT Return the desired value.

ReturnCode HCCBeginTransaction(HCCHandle file)
Begin a write transaction for the specified file. A write transaction is a special mode that allows queuing and
executing write calls to the HCC file. Instead of allowing writes in immediate mode, a transaction enables a smart
caching system along with arbitrary optimizations in a deferred writing mode. This system will convert random
writes into sequential writes and will minimize the number of I/O flushes, resulting in better write performance.

Parameters
Type ID Direction Description

HCCHandle file IN File handle.
Remarks

Only one transaction can be active at a time, calling this function while a transaction is active will return error code
#10022. To commit and subsequently end a transaction, you must call the function HCCCommitTransaction. Some
HCC functions can only be called while a transaction is active.

ReturnCode HCCCommitTransaction(HCCHandle file, out uint updated_count)
Commit all write operations cached in an active transaction.

Parameters
Type ID Direction Description

HCCHandle file IN File handle.
uint updated_count OUT Number of rates affected by an update operation.

Remarks
A transaction must be active to call this function; otherwise it will return error code #10022. This function will
subsequently end the transaction, clearing its queued write operations. This function performs device I/O
operations; it may take a considerable amount of time depending on the complexity and number of write
operations. Do not call it under critical and latency-sensitive sections of your programs.

ReturnCode HCCUpdateRates(HCCHandle file, uint index, HCCRates rates)
Update rates data at the specified index in file with the data from the specified rates structure . This function
operates in M1 period (native) and updates are applied directly to the file. It does not make changes to the loaded
history. History must be reloaded to reflect changes.

Parameters
Type ID Direction Description

HCCHandle file IN File handle.

uint index IN
Zero based index of the rates structure to update. This index points to an
element in history file and not to an element in history buffer.

HCCRates rates IN Input rates data to be written. Data must be composed in M1 period.
Remarks

This function can only be called while there is an active write transaction, thus it is not executed immediately,
instead, it gets cached and executed when the transaction is committed.
To help preserve file integrity, some validations are applied immediately upon calling this function while others are
deferred and applied when the transaction is committed.
When committing a transaction, if multiple update calls were issued and one of them contains invalid rates data
then that update operation is ignored and the transaction process is continued with the next update.
Multiple update calls for the same index get overwritten and only the last update call is executed.

ReturnCode HCCExportHistoryCSV(HCCHandle file, const(wchar)* csv_path, const(wchar)* sep, const(wchar)*
decim, ushort language, uint start, uint how_many, out uint export_count)
Export already memory mapped rates to CSV file.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.

const(wchar)* csv_path IN
Path to the CSV file. If the file does not exist then it will be created. If
the file exists already then its content will be replaced.

const(wchar)* sep IN CSV list separator. Pass null to use the system defined value.
const(wchar)* decim IN Decimal mark. Pass null to use the system defined value.

ushort language IN Language ID of the CSV header. Pass 0 for the default language.
uint start IN Zero based index of the first element.

uint how_many IN Specify how many rates to export. Zero means all.

uint export_count OUT Return the number of rates exported.
Remarks

This function export rates previously loaded by HCCLoadHistory only. If history is empty because it wasn’t loaded
before or file did not have rates available then this function will return error code #10017 or #10018 accordingly.

In Windows, you can change the default system parameters at the regional settings in the control panel.

ReturnCode HCCExportCSV(HCCHandle file, const(wchar)* csv_path, const(wchar)* sep, const(wchar)* decim,
ushort language, uint period, uint start, uint how_many, out uint export_count)
Directly export rates within the specified range to a CSV file.

Parameters
Type ID Direction Description

HCCHandle file IN File handle to export.

const(wchar)* csv_path IN
Path to the CSV file. If the file does not exist then it will be created. If
the file exists already then its content will be replaced.

const(wchar)* sep IN CSV list separator. Pass null to use the system defined value.
const(wchar)* decim IN Decimal mark. Pass null to use the system defined value.

ushort language IN Language ID of the CSV header. Pass 0 for the default language.

uint period IN
Timeframe of history. Can be any value >0 or one of the HCC
predefined ones (HCC_TIMEFRAME). This parameter is still
experimental, you should pass 1.

uint start IN Zero based index of the first element.

uint how_many IN Specify how many rates to export. Zero means all.
uint export_count OUT Return the number of rates exported.

Remarks
This function directly exports rates without the need to load history before.

In Windows, you can change the default system parameters at the regional settings in the control panel.

ReturnCode HCC2CSV(const(wchar)* hcc_path, const(wchar)* csv_path, const(wchar)* sep, const(wchar)* decim,
ushort language, uint period, uint start, uint how_many, out uint export_count)
Convenient function to directly and efficiently export an HCC file to a CSV file.

Parameters
Type ID Direction Description

const(wchar)* hcc_path IN Path to the source history file.

const(wchar)* csv_path IN
Path to the CSV file. If the file does not exist then it will be created. If
the file exists already then its content will be replaced.

const(wchar)* sep IN CSV list separator. Pass null to use the system defined value.

const(wchar)* decim IN Decimal mark. Pass null to use the system defined value.

ushort language IN Language ID of the CSV header. Pass 0 for the default language.

uint period IN
Timeframe of history. Can be any value >0 or one of the HCC
predefined ones (HCC_TIMEFRAME). This parameter is still
experimental, you should pass 1.

uint start IN Zero based index of the first element.
uint how_many IN Specify how many rates to export. Zero means all.

uint export_count OUT Return the number of rates exported.
Remarks

This export function is the most efficient one because it does not need to create a file handle and it does not go
through a couple of overheads.

In Windows, you can change the default system parameters at the regional settings in the control panel.

MetaTrader is Copyright 2000-2018, MetaQuotes Software Corp.

