
HCC API Documentation

V1.0 (2012-11-22)
Copyright © 2012 Heinz Traub

HCC API Reference

The HCC API is a series of declarations, conventions and specifications created to promote a common interface to

work with MetaTrader history files. The HCC Library is the “first 3rd party” implementation of the HCC API, being the

official one considered the private work from MetaQuotes (who created the file format) even if both foundations do

not entirely comply between each other. The HCC Library has been conceived as a C DLL using the D programming

language v2; therefore functions will be explained using the D syntax which is common to the C family languages.

Programmers are free to create their own implementations of the HCC API matching the described conventions or

use the HCC Library in their own programs using this document as a base guide and reference.

Index

HCC Types

HCC Constants

HCC Structures

HCC Enumerations

Return Code Table

HCC Functions

HCC Types

The following table describes the types used by the HCC library, their size in memory and what they are used for:

Type Size Usage

ReturnCode Unsigned 32 bits integer Success or failure of HCC functions. Returned by most HCC functions.

HCCHandle Unsigned 32 bits integer Represents an opened HCC file. Used by other HCC functions.

ushort Unsigned 16 bits integer Used to represent a language ID.

uint Unsigned 32 bits integer Used mainly as a type for certain rates members.

double 64 bits floating point Used for prices.

size_t
Variable size unsigned
integer

This is an integral type that span its size long enough to accommodate a
pointer. It is 4 bytes long in current 32 bits version of the library. Future
64 bits releases would be 8 bytes long.
This type is mostly used for indexes, ranges, amounts and counts.

wchar*
Size of a wide char
pointer

Null terminated string in UTF-16LE encoding.
Used for any string such as file paths, error messages and symbols.

HCC Constants

Type ID Value Description

ReturnCode HCC_SUCCESS 0 Success of HCC functions. Returned by most HCC functions.

HCC Structures

In the HCC Library, the fields of a structure have no alignment. Members are packed together to match the

behaviour in MQL5.

HCCRates

Primary structure used to define rates in OHLC format plus some extra fields.

Members

Type ID Description

uint time

Start date and time of the period. The type is HCC specific and is defined as an unsigned
32 bits arithmetic type that represents the number of seconds elapsed since 1970.01.01
00:00, expressed as UTC time (GMT timezone = 0).
MetaTrader uses the same format but stores the timestamp in a 64 bits integral type
(datetime) for a broader range or greater accuracy. The HCC type uses 32 bits in memory
but can be perfectly promoted to a datetime type.

double open Open price.

double high Highest price.

double low Lowest price.

double close Close price.

uint volume Tick volume.

uint spread Spread.

uint period

Timeframe in minutes of the current rates structure. Rates read from a history file have
the default of 1.
This value is used by time computing functions. Users can define their own timeframes
for arbitrary computations but it is advisable to use one of the HCC predefined ones.

HCC Enumerations

The base type for enums is int (signed 32 bits integer). A cast to uint (unsigned 32 bits integer) may be required by

some languages when using these enums with HCC functions.

HCC_RATES_PROPERTY

Used to get members from rates structure using HCCGetRatesDouble and HCCGetRatesInteger functions.

Values

ID Value Description

Time 0

Open 1

High 2

Low 3

Close 4

Volume 5

Spread 6

Period 7

HCC_TIMEFRAME

Timeframes expressed as minutes. Used by time computing functions.

Values

ID Value Description

M1 1 1 Minute.

M2 2 2 Minutes.

M3 3 3 Minutes.

M4 4 4 Minutes.

M5 5 5 Minutes.

M6 6 6 Minutes.

M10 10 10 Minutes.

M12 12 12 Minutes.

M15 15 15 Minutes.

M20 20 20 Minutes.

M30 30 30 Minutes.

H1 60 1 Hour.

H2 120 2 Hours.

H3 180 3 Hours.

H4 240 4 Hours.

H6 360 6 Hours.

H8 480 8 Hours.

H12 720 12 Hours.

D1 1440 1 Day.

W1 10080 1 Week.

MN28 40320 1 Month containing 28 days.

MN29 41760 1 Month containing 29 days.

MN30 43200 1 Month containing 30 days.

MN31 44640 1 Month containing 31 days.

MN MN30 Standard Month.

TM MN * 3 1 Trimester.

SM MN * 6 1 Semester.

Y1 525600 1 Year.

LY1 527040 1 Leap year.

Return Code Table

HCC functions return a code (ReturnCode type) to notify either success or failure. These codes can be brought to

human readable strings to know their meaning using the HCCGetErrorMessage function. In current version the

default and only language is English but more languages might be added in future releases.

Code Description

0 Success.

1 Unknown error.

2
Could not retrieve error description. Please note that this description is naturally not retrievable
using the HCCGetErrorMessage function.

10000 The specified file doesn't exist.

10001 Couldn't open the specified file.

10002 The specified file is not readable.

10003 The specified file is not writeable.

10004 The specified file is not seekable.

10005 The specified file doesn't have a valid header.

10006 Read error.

10007 Write error.

10008 Seek error.

10009 The end of file has been reached.

10010 Invalid history file.

10011 Invalid file handle.

10012 Invalid index.

10013 Invalid property.

10014 Invalid separator.

10015 Invalid decimal mark.

10016 Invalid CSV parameters. Separator might have character(s) in common with decimal mark.

10017 History has not been previously loaded.

10018 History cache is empty.

10019 Invalid period.

HCC Functions

void HCCInitialize(void* gc)
Perform library initialization routines.

Parameters
Type ID Direction Description

void* gc IN

Handle of void pointer type to the garbage collector. This parameter can
be safely set to NULL if you don’t know what to do with it. Setting this
parameter to NULL will instruct the HCC library to use its own integrated
garbage collector.

Remarks
This function is available only for the D programming language and is totally optional.

If you wish to set the garbage collector then make sure to always call this function before calling any other function
of the HCC API.

The handle to the garbage collector is absolutely optional but the idea of specifying it is for system resources
optimization purposes: It is better to have only one garbage collector running in the background than two of them
performing the same operations.

void HCCTerminate()

Perform library termination routines (module destructors, garbage collection, etc).

Remarks

This function is available only for the D programming language and is totally optional. Make sure to always call this
function before your program ends.

ReturnCode HCCGetErrorMessage(ReturnCode code, ushort language, wchar* message)
Gets verbose description for the specified code.

Parameters
Type ID Direction Description

ReturnCode code IN Code of the message you want to get.
ushort language IN Language ID of the message. Pass 0 for the default language.

wchar* message OUT
Message associated for the code. Memory for the string must be
previously allocated and the space must be long enough to hold the
returned string including the terminating null character.

Remarks
There is no retrievable message for error code #2; in that case it will return the same code.

This is one of the very few functions that cannot take advantage of the automatic memory management and require
preallocated memory due to the work with vector data. It has been implemented this way to maintain compatibility
with languages that do not have direct access to pointers.

ReturnCode HCCOpenFile(const(wchar)* path, out HCCHandle file)
Open history file for further operation.

Parameters
Type ID Direction Description

const(wchar)* path IN Path to the history file. It can be an absolute path (C:\data\myfile.hcc) or
a path relative to the current working directory (..\data\myfile.hcc).

HCCHandle file OUT
Handle to the opened file. You should keep a reference to this handle
because it is used by most HCC functions.

ReturnCode HCCCloseFile(HCCHandle file)
Close history file pointed by the specified handle.

Parameters
Type ID Direction Description

HCCHandle file IN
File handle to close. Using this handle with any HCC function after it is
closed will return error code #10011.
The handle must be a valid one created by the HCCOpenFile function.

Remarks
This function does not reset the value of the handle to any other value.
The handle becomes invalid after calling this function, even if the value held is non zero.

ReturnCode HCCGetSymbol(HCCHandle file, wchar* symbol)
Get the symbol associated with the specified history file.

Parameters
Type ID Direction Description

HCCHandle file IN File handle whose symbol you want to get.

wchar* symbol OUT
The symbol of the history file. Memory for the string must be previously
allocated and the space must be long enough to hold the returned string
including the terminating null character.

Remarks

This is one of the very few functions that cannot take advantage of the automatic memory management and require
preallocated memory due to the work with vector data. It has been implemented this way to maintain compatibility
with languages that do not have direct access to pointers.

ReturnCode HCCGetPrecision(HCCHandle file, out uint precision)
Get symbol decimal precision (number of digits after the decimal mark).

Parameters
Type ID Direction Description

HCCHandle file IN File handle.
uint precision OUT Precision value.

Remarks
The precision value is most often used for text formatting purposes.
ReturnCode HCCLoadHistory(HCCHandle file, uint period, size_t start, size_t how_many, out size_t load_count)
Load rates from the specified file handle to an internal buffer in system memory using specific parameters.

Parameters
Type ID Direction Description

HCCHandle file IN Source history file.

uint period IN
Timeframe of history. Can be any value >0 or one of the HCC predefined
ones (HCC_TIMEFRAME). This parameter is still experimental, you should
pass 1.

size_t start IN Zero based index of the first element.

size_t how_many IN Specify how many rates to load. Zero means all available.

size_t load_count OUT Return the number of rates loaded.

Remarks
This function can be called as many times as you want. With each call the internal buffer is cleared and the new
rates are stored.
To be memory efficient, instead of loading the whole history (start = 0 and how_many = 0) you can load history in
small chunks by making sequential calls and increasing the start value to the number of rates loaded already.
Variable load_count is very helpful for this purpose. The HCC Library is very quick and efficient for this kind of
sequential load.
In case of reaching the end of file, the function will return HCC_SUCCESS and load_count will return 0.

Rates are created and loaded based on the specified period. A file may contain thousand of rates but this doesn’t
mean there are as much as needed to create rates in the specified timeframe. This could result in history having less
rates than the source file or having no rates at all.

ReturnCode HCCGetHistoryLength(HCCHandle file, out size_t length)
Get the number of rates in the internal history buffer.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
size_t length OUT Number of rates in previously loaded history.

Remarks
This function is useful in case you did not hold a reference to the value of load_count returned by the
HCCLoadHistory function, as it returns the same value.

History must have been loaded first using HCCLoadHistory or else error code #10017 will be returned.

History length may be 0 if the history file has no rates available. If that is the case then the function will return
HCC_SUCCESS and load_count will return 0.

ReturnCode HCCGetHistoryPeriod(HCCHandle file, out uint period)
Get the timeframe of the currently loaded history.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
uint period OUT Current timeframe.

Remarks
History must have been loaded first using HCCLoadHistory or else error code #10017 will be returned.

If history was previously loaded but there were no rates available then this function will return HCC_SUCCESS and
period will return the timeframe used when history was loaded.

ReturnCode HCCGetRates(HCCHandle file, size_t index, out HCCRates rates)
Get the selected rates structure from history buffer to do further work with its values.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.

size_t index IN
Zero based index of the rates structure to load. This index points to an
element in history buffer and not to an element in history file.

HCCRates rates OUT The selected rates structure.

Remarks
There must be rates in history previously loaded by HCCLoadHistory and the index must be valid one.

ReturnCode HCCGetRatesDouble(HCCHandle file, size_t index, HCC_RATES_PROPERTY prop, out double value)
Alternative function to get a member of double type from a rates structure.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
size_t index IN Zero based index of the rates structure in history buffer.

HCC_RATES_PROPERTY prop IN Member/property to load.

double value OUT Return the desired value.

ReturnCode HCCGetRatesInteger(HCCHandle file, size_t index, HCC_RATES_PROPERTY prop, out uint value)
Alternative function to get a member of uint type from a rates structure.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.
size_t index IN Zero based index of the rates structure in history buffer.

HCC_RATES_PROPERTY prop IN Member/property to load.

uint value OUT Return the desired value.

ReturnCode HCCExportHistoryCSV(HCCHandle file, const(wchar)* csv_path, const(wchar)* sep, const(wchar)*
decim, ushort language, size_t start, size_t how_many, out size_t export_count)
Export already memory mapped rates to CSV file.

Parameters
Type ID Direction Description

HCCHandle file IN File handle associated with the history buffer.

const(wchar)* csv_path IN
Path to the CSV file. If the file does not exist then it will be created. If
the file exists already then its content will be replaced.

const(wchar)* sep IN CSV list separator. Pass null to use the system defined value.

const(wchar)* decim IN Decimal mark. Pass null to use the system defined value.

ushort language IN Language ID of the CSV header. Pass 0 for the default language.

size_t start IN Zero based index of the first element.

size_t how_many IN Specify how many rates to export. Zero means all.

size_t export_count OUT Return the number of rates exported.

Remarks
This function export rates previously loaded by HCCLoadHistory only. If history is empty because it wasn’t loaded
before or file did not have rates available then this function will return error code #10017 or #10018 accordingly.

In Windows, you can change the default system parameters at the regional settings in the control panel.

ReturnCode HCCExportCSV(HCCHandle file, const(wchar)* csv_path, const(wchar)* sep, const(wchar)* decim,
ushort language, uint period, size_t start, size_t how_many, out size_t export_count)
Directly export rates within the specified range to a CSV file.

Parameters
Type ID Direction Description

HCCHandle file IN File handle to export.

const(wchar)* csv_path IN
Path to the CSV file. If the file does not exist then it will be created. If
the file exists already then its content will be replaced.

const(wchar)* sep IN CSV list separator. Pass null to use the system defined value.

const(wchar)* decim IN Decimal mark. Pass null to use the system defined value.

ushort language IN Language ID of the CSV header. Pass 0 for the default language.

uint period IN
Timeframe of history. Can be any value >0 or one of the HCC
predefined ones (HCC_TIMEFRAME). This parameter is still
experimental, you should pass 1.

size_t start IN Zero based index of the first element.

size_t how_many IN Specify how many rates to export. Zero means all.

size_t export_count OUT Return the number of rates exported.

Remarks
This function directly exports rates without the need to load history before.

In Windows, you can change the default system parameters at the regional settings in the control panel.

ReturnCode HCC2CSV(const(wchar)* hcc_path, const(wchar)* csv_path, const(wchar)* sep, const(wchar)* decim,
ushort language, uint period, size_t start, size_t how_many, out size_t export_count)
Convenient function to directly and efficiently export an HCC file to a CSV file.

Parameters
Type ID Direction Description

const(wchar)* hcc_path IN Path to the source history file.

const(wchar)* csv_path IN
Path to the CSV file. If the file does not exist then it will be created. If
the file exists already then its content will be replaced.

const(wchar)* sep IN CSV list separator. Pass null to use the system defined value.

const(wchar)* decim IN Decimal mark. Pass null to use the system defined value.

ushort language IN Language ID of the CSV header. Pass 0 for the default language.

uint period IN
Timeframe of history. Can be any value >0 or one of the HCC
predefined ones (HCC_TIMEFRAME). This parameter is still
experimental, you should pass 1.

size_t start IN Zero based index of the first element.

size_t how_many IN Specify how many rates to export. Zero means all.

size_t export_count OUT Return the number of rates exported.

Remarks
This export function is the most efficient one because it does not need to create a file handle and it does not go
through a couple of overheads.

In Windows, you can change the default system parameters at the regional settings in the control panel.

MetaTrader is Copyright 2000-2013, MetaQuotes Software Corp.

